Almost sure limit theorems with applications to non-regular continued fraction algorithms
Claudio Bonanno and Tanja I. Schindler, preprint
arxiv.org/abs/2304.01132
Limit Theorems for a class of unbounded observables with an application to "Sampling the Lindelöf hypothesis"
Kasun Fernando and Tanja I. Schindler, preprint
arxiv.org/abs/2302.13807
Trimmed sums for observables on the doubling map,
Tanja I. Schindler, preprint
arxiv.org/abs/1810.03223
Doubly intermittent maps with critical points, unbounded derivatives and regularly varying tail
Mubarak Muhammad and Tanja I. Schindler,
accepted at Discrete and Continuous Dynamical Systems Series A
arxiv.org/abs/2211.15648
Regularity properties for k-Brjuno and Wilton functions
Seul Bee Lee, Stefano Marmi, Izabela Petrykiewicz and Tanja I. Schindler
Aequationes mathematicae, Volume 98, pages 13–85, (2024)
DOI: 10.1007/s00010-023-00967-w
arxiv.org/abs/2106.07298
See also the errata DOI: 10.1007/s00010-023-00967-w
Prime numbers in typical continued fractions expansions
Tanja I. Schindler and Roland Zweimüller
Bollettino dell'Unione Matematica Italiana, Volume 16, pages 259-274 (2023),
special issue Advances in Dynamical Systems by the DinAmicI group
DOI: 10.1007/s40574-023-00349-9
arxiv.org/abs/2209.04368
Almost sure asymptotic behaviour of Birkhoff sums for infinite measure-preserving dynamical systems
Claudio Bonanno and Tanja I. Schindler
Discrete and Continuous Dynamical Systems Series A, Volume 42, Number 11, pages 5541-5576 (2022)
DOI: 10.3934/dcds.2022113
arxiv.org/abs/2104.10458
A convergence criterion for the unstable manifolds for the MacKay approximate renormalisation
Seul Bee Lee, Stefano Marmi and Tanja I. Schindler
Physica D, Volume 435, 133300 (2022)
DOI: 10.1016/j.physd.2022.133300
arxiv.org/abs/2111.10807
A Central limit theorem for the Birkhoff sum of the Riemann zeta-functions over a Boolean type transformation
Tanja I. Schindler
Dynamical Systems CDSS, Volume 35, Number 4, pages 682-703 (2020)
DOI: 10.1080/14689367.2020.1780198
arxiv.org/abs/2003.02118
Mean convergence for intermediately trimmed Birkhoff sums of observables with regularly varying tails
Marc Kesseböhmer and Tanja I. Schindler
Nonlinearity, Volume 33, Number 10, Pages 5543-5566 (2020)
DOI: 10.1088/1361-6544/ab9585
arXiv.org/abs/1903.09337
Limit theorems for counting large continued fraction digits
Marc Kesseböhmer and Tanja I. Schindler
Lithuanian Mathematical Journal, Volume 60, Number 2, pages 189–207 (2020)
DOI: 10.1080/14689367.2019.1667305
Intermediately trimmed strong laws for Birkhoff sums on subshifts of finite type
Marc Kesseböhmer and Tanja I. Schindler
Dynamical Systems CDSS, Volume 35, Number 2, Pages 275-305 (2020)
DOI: 10.3934/dcds.2022113
Strong laws of large numbers for intermediately trimmed Birkhoff sums of observables with infinite mean
Marc Kesseböhmer and Tanja I. Schindler
Stochastic Processes and their Applications, Volume 129, Number 10, Pages 4163–4207 (2019)
DOI: 10.1016/j.spa.2018.11.015
See also the errata DOI: 10.1016/j.spa.2020.07.014
Small time convergence of subordinators with regularly or slowly varying canonical measure
Ross Maller and Tanja I. Schindler
Stochastic Processes and their Applications, Volume 129, Number 10, Pages 4144–4162 (2019)
DOI: 10.1016/j.spa.2018.11.016
Scarling Properties of the Thue-Morse measure
Michael Baake, Philipp Gohlke, Marc Kesseböhmer, and Tanja I. Schindler
Discrete and Continuous Dynamical Systems Series A, Volume 39, Number 7, Pages 4157-4185 (2019)
DOI: 10.3934/dcds.2022113
Strong laws of large numbers for intermediately trimmed sums of i.i.d. random variables with infinite mean
Marc Kesseböhmer and Tanja I. Schindler
Journal of Theoretical Probability, Volume 32, Number 2, Pages 702-720 (2019)
DOI:10.1007/s10959-017-0802-0
Scaling properties of the Thue–Morse measure: A summary
Tanja I. Schindler
in Wood D.R., de Gier J., Praeger C.E., Tao T. (eds) 2019-20 MATRIX Annals. MATRIX Book Series, vol 4. Springer, Cham., (2021)
DOI: 10.1007/978-3-030-62497-2_54
Trimmen zur Kontrolle der Unendlichkeit - Grenzwertsätze für getrimmte Summen von Zufallsvariablen mit unendlichem Erwartungswert
Tanja I. Schindler
in Plenarvorträge der Jungen Akademie Mainz 2018-2020,
DOI: 10.25162/9783515129947
Generalized Strong Laws of Large Numbers for Intermediately Trimmed Sums for Non-negative Stationary Processes
Tanja I. Schindler
http://nbn-resolving.de/urn:nbn:de:gbv:46-00104900-16
tanja (dot) schindler (at) uj (dot) edu (dot) pl
Faculty of Mathematics and Computer Science
Jagiellonian University
Office 2100
ul. Łojasiewicza 6
30-348 Krakow
Poland
t (dot) schindler (at) exeter (dot) ac (dot) uk
Department of Mathematics and Statistics,
Harrison Building,
University of Exeter,
Exeter EX4 4QF,
United Kingdom
I have a guest status at the following address
tanja (dot) schindler (at) univie (dot) ac (dot) atFaculty of Mathematics
University of Vienna
Office 02.136
Oskar-Morgenstern-Platz 1
1090 Vienna
Austria